H43J-1095:
Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

Thursday, 18 December 2014
Khalida Mussarat Khan and Muhammad Yaseen, University of the Punjab, Lahore, Pakistan
Abstract:
Pakistan’s economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen’s method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows that should be considered by the water managers for better water management in a water scarcity country like Pakistan. On the basis of collected real time data, an awareness regarding present Integrated Water Management (IWM) working with up-to-date techniques is recommended for effective water on-going reform process.