OS33D-04:
Bluefin 9M AUV Survey of the Hubbard Glacier Morainal Bank: Proof-of-Concept Study of Autonomous Underwater Vehicle Investigations Proximal to a Tidewater Glacier

Wednesday, 17 December 2014: 2:25 PM
John A Goff, Univ of Texas at Austin, Austin, TX, United States, Sean P S Gulick, University of Texas at Austin, Austin, TX, United States, Daniel E Lawson, Dartmouth College, Hanover, NH, United States and William O'Halloran, Bluefin Robotics, Inc., Quincy, MA, United States
Abstract:
Hubbard Glacier is one of the few advancing tidewater glaciers in the world, offering a premier opportunity for studying ice/sediment/seawater interactions at a tidewater glacier front that is in contact with the stabilizing submarine morainal bank. However, the seafloor and water column proximal to the ice face of a marine-terminating glacier is one of the most challenging and extreme environments imaginable for marine survey work. Frequently choked with constantly-shifting mélange ice at the sea surface and at risk from calving, surface vessels cannot operate safely proximal to the ice face. AUV (Autonomous Underwater Vehicle) technology provides an opportunity to survey in areas where surface vessels cannot. Operating well below the sea surface the AUV can operate without hindrance or danger to human operators. In addition, the AUV can be programmed to operate close to the seafloor at a constant altitude, enabling the finest-detail currently possible for acoustic seafloor mapping and consistent resolution irrespective of water depth. With these considerations in mind, we conducted a proof-of-concept survey of the Hubbard Glacier morainal bank in June, 2014. We utilized the Bluefin 9M, the smallest of their line of AUVs. Its size enabled deployment and recovery from a small charter fishing vessel well-suited to navigating through mélange-choked waters. The AUV’s payload included a Klein UUV-3500 interferometric sonar (455/900 kHz), which enables acquisition of sidescan backscatter and swath bathymetry up to ~75 m to each side of the instrument from ~10 m altitude over the seabed, and sensors for measuring conductivity, temperature, depth (CTD) and optical backscatter (OBS). Although our operations were shortened due to an unfortunate failure in the sonar electronics, sufficient data were collected along the morainal bank to clearly prove the viability of AUV operations in this harsh environment. The data provide centimeter-scale seafloor detail close to the glacier in regions that could not be surveyed with surface vessels. We observed a number of intricate geomorphic features in the raw images that are to our knowledge without precedent. Of particular interest are a series of barchan-shaped bedforms that may provide evidence of significant turbidity flows down the face of the morainal bank.