Formulation and Application of a Physically-Based Rupture Probability Model for Large Earthquakes on Subduction Zones: A Case Study of Earthquakes on Nazca Plate

Wednesday, 17 December 2014: 3:25 PM
Mehrdad Mahdyiar1, Gerald Galgana1, Bingming Shen-Tu1, Elliot Klein1 and Claire Willis Pontbriand2, (1)AIR-Worldwide Corporation, Boston, MA, United States, (2)Air Worldwide, Boston, MA, United States
Most time dependent rupture probability (TDRP) models are basically designed for a single-mode rupture, i.e. a single characteristic earthquake on a fault. However, most subduction zones rupture in complex patterns that create overlapping earthquakes of different magnitudes. Additionally, the limited historic earthquake data does not provide sufficient information to estimate reliable mean recurrence intervals for earthquakes. This makes it difficult to identify a single characteristic earthquake for TDRP analysis. Physical models based on geodetic data have been successfully used to obtain information on the state of coupling and slip deficit rates for subduction zones. Coupling information provides valuable insight into the complexity of subduction zone rupture processes.

In this study we present a TDRP model that is formulated based on subduction zone slip deficit rate distribution. A subduction zone is represented by an integrated network of cells. Each cell ruptures multiple times from numerous earthquakes that have overlapping rupture areas. The rate of rupture for each cell is calculated using a moment balance concept that is calibrated based on historic earthquake data. The information in conjunction with estimates of coseismic slip from past earthquakes is used to formulate time dependent rupture probability models for cells. Earthquakes on the subduction zone and their rupture probabilities are calculated by integrating different combinations of cells. The resulting rupture probability estimates are fully consistent with the state of coupling of the subduction zone and the regional and local earthquake history as the model takes into account the impact of all large (M>7.5) earthquakes on the subduction zone. The granular rupture model as developed in this study allows estimating rupture probabilities for large earthquakes other than just a single characteristic magnitude earthquake. This provides a general framework for formulating physically-based rupture probability models for large earthquakes on subduction zones that is consistent with their true locking state and earthquake history. We will present the formulation of the proposed model and its application to the Nazca plate subduction zone.