Feedbacks between deformation and reactive melt transport in the mantle lithosphere during rifting

Wednesday, 17 December 2014: 3:25 PM
Andrea Tommasi, Virginie Baptiste, Alain Raymond Vauchez and Alexandre Fort, GĂ©osciences Montpellier, University of Montpellier II, Montpellier Cedex 05, France
The East-African rift associates lithospheric thinning with extensive volcanism. Melts, even at low fractions, reduce the mantle viscosity. They also carry and exchange heat, mainly via reactions (latent heat), modifying the temperature and the rheology, which in turn controls their transport through the lithospheric mantle. Analysis of microstructures and crystal preferred orientations of mantle xenoliths from different localities along the East-African rift system highlights strong feedbacks between deformation, melt transport, and thermal evolution in the lithospheric mantle. Microstructures change markedly from south (young) to north (mature rift). In Tanzania, mylonitic to porphyroclastic peridotites predominate in on-axis localities, while off-axis ones are coarse-granular to porphyroclastic, pointing to heterogeneous deformation and variable annealing due to local interaction with fluids or to different time lags between deformation and extraction. Mylonites point to strain localization but there is no evidence for dominant grain boundary sliding: ubiquituous intracrystalline deformation in olivine and orthopyroxene and strong CPO record dislocation creep with dominant [100] glide in olivine. Synkinematic replacement of opx by olivine in both mylonitic and porphyroclastic peridotites suggests that deformation continued in the presence of melt under near-solidus conditions. This heating was transient: exsolutions in opx record cooling before extraction. Mega peridotites, which sample the southern border of the Ethiopian plateau, are coarse-porphyroclastic and show widespread metasomatism by basalts or by evolved volatile-rich low melt fractions. The former predated or was coeval to deformation, since olivine and pyroxene CPO are coherent. Exsolutions in opx imply that the high primary equilibration temperatures, which are consistent with the coarse-grained microstructures, are linked to transient heating. Finally, the fine-grained polygonal microstructures, with evenly distributed interstitial pyroxenes aligned in the foliation, and weak but uncorrelated olivine and pyroxenes CPO in xenoliths from the Gulf of Aden margin record post kinematic reactive melt percolation and refertilisation of the lithospheric mantle controlled by the preexisting fabric.