B41K-0202:
Tree species composition influences dependence of climate forcing on spring phenology across temperate deciduous broadleaf forests in Eastern United States
Thursday, 18 December 2014
Eli K Melaas1, Mark A Friedl1 and Andrew D Richardson2, (1)Boston University, Boston, MA, United States, (2)Harvard University, Cambridge, MA, United States
Abstract:
Phenological events in temperate deciduous forests, such as bud burst and senescence, exert strong control over seasonal fluxes of water, energy and carbon. The timing of these transitions is influenced primarily by air temperature, which makes them robust indicators of biological responses to climate change. However, the exact nature and magnitude of these controls is currently poorly understood. In this paper, we used a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations, including camera-based time series of canopy greenness from PhenoCams and citizen science data from the USA-National Phenology Network, to develop and test models that predict the timing of spring leaf emergence across several different deciduous broadleaf forest types in the eastern contiguous United States (68°W-95°W, 30°N-50°N). As part of this analysis, we analyzed two existing land surface model phenology subroutines and specifically examined predictions for two years with anomalously warm temperatures during dormancy to investigate the role of chilling. The results indicate significant differences in cumulative heating requirements and photoperiod cues among forest types. Moreover, we found that regional patterns of species composition explain spatial variation in prediction errors from existing models. In addition, we identified a marginal, but statistically significant decrease in model bias when chilling requirements were included during an anomalously warm winter with average spring temperatures, but no significant improvement when both winter and springtime temperatures were more representative of future climate.