H11F-0921:
On the performance of updating Stochastic Dynamic Programming policy using Ensemble Streamflow Prediction in a snow-covered region

Monday, 15 December 2014
Alexandre Martin1, Pascal Côté2 and Robert Leconte1, (1)University of Sherbrooke, Sherbrooke, QC, Canada, (2)Rio Tinto Alcan, Énergie électrique, Jonquière, QC, Canada
Abstract:
Stochastic Dynamic Programming (SDP) is known to be an effective technique to find the optimal operating policy of hydropower systems. In order to improve the performance of SDP, this project evaluates the impact of re-updating the policy at every time step by using Ensemble Streamflow Prediction (ESP). We present a case study of the Kemano’s hydropower system on the Nechako River in British Columbia, Canada. Managed by Rio Tinto Alcan (RTA), this system is subject to large streamflow volumes in spring due to important amount of snow depth during the winter season. Therefore, the operating policy should not only maximize production but also minimize the risk of flooding. The hydrological behavior of the system is simulated with CEQUEAU, a distributed and deterministic hydrological model developed by the Institut national de la recherche scientifique - Eau, Terre et Environnement (INRS-ETE) in Quebec, Canada. On each decision time step, CEQUEAU is used to generate ESP scenarios based on historical meteorological sequences and the current state of the hydrological model. These scenarios are used into the SDP to optimize the new release policy for the next time steps. This routine is then repeated over the entire simulation period. Results are compared with those obtained by using SDP on historical inflow scenarios.