Assessment of Mixed Layer Mesoscale Parameterization in Eddy Resolving Simulations.

Thursday, 18 December 2014
Maria V. Luneva, National Oceanography Center, Liverpool, L3, United Kingdom, Carol Anne Clayson, Woods Hole Oceanographic Institution, Physical Oceanography, Woods Hole, MA, United States and Mikhail S Dubovikov, NASA Goddard Institute for Space Studies, New York, NY, United States
In eddy resolving simulations we test a mixed layer mesoscale parameterization, developed recently by Canuto and Dubovikov (2011). The parameterization yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy. An expression for the later in terms of mean fields has been found too to get a closed parameterization in terms of the mean fields only. In 40 numerical experiments we simulated the two types of flows: idealized flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow in shallow and narrow straits. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1o - 2o and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are highly correlated with the parameterization. After averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations, are quite consistent with the parameterization for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parameterization unless vertical turbulent mixing in the upper layer becomes strong enough to compare with mesoscale advection. In the later case, numerical simulations demonstrate that the deviation of the fluxes from the parameterization is controlled by the dimensionless parameter γ, estimating the ratio of vertical diffusion term to a mesoscale advection. The empirical dependence of vertical flux on γ is found. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.