T43E-06:
The Amazon River reversal explained by tectonic and surface processes

Thursday, 18 December 2014: 2:55 PM
Victor Sacek, USP University of Sao Paulo, São Paulo, Brazil
Abstract:
The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.