Modelling the Contribution of Long-range Transport of Ammonium Nitrates to Urban Air Pollution and Human Exposure in the United Kingdom

Monday, 15 December 2014: 8:45 AM
Massimo Vieno1,2, Stefan Reis2, Rachel Beck2, Riinu Ots2, Andrea Moring2, Susanne Steinle2, Mathew R Heal3 and Ruth M Doherty1, (1)University of Edinburgh, Edinburgh, United Kingdom, (2)Centre for Ecology & Hydrology, Penicuik, United Kingdom, (3)University of Edinburgh, School of Chemistry, Edinburgh, United Kingdom
Urban air pollution and its effects on human health remain to be a challenge in spite of substantial reductions in the emissions of air pollutants (e.g. sulphur dioxide, nitrogen oxides) over the past decades in Europe. While primary pollutants play a vital role in urban air pollution, recent model studies highlight and quantify the relevance of long-range transport of secondary pollution (e.g. secondary inorganic aerosols such as ammonium sulphates and nitrates, or ground level ozone) for the exceedance of local air quality limit values in urban areas across Europe. This contribution can be seen in recurring episodes, for instance in spring 2014, with very high levels of fine particulate matter (PM2.5) in Paris, London and other European cities, as well as in elevated background levels throughout the year. While we will focus on the contribution to exceedances of PM2.5 limit values here, this transboundary transport has wider implications for the deposition of reactive nitrogen far from the source as well.

As local authorities are tasked with ensuring the attainment of air quality limit values, exceedances caused by long-range transport, with emissions originating from sources outside of their jurisdiction present substantial challenges. Furthermore, while policy measures have successfully addressed emissions from large point sources in the past, and made progress towards reducing pollution from road vehicles, emissions of ammonia from agricultural sources - a key component for the long-range transport of secondary inorganic aerosols - have remained relatively stable in Europe.

Using the example of Europe and the UK, we demonstrate in our presentation how atmospheric chemistry transport modelling across different scales (from regional to local) can provide vital insight in the mechanisms of and relative contributions to the formation of secondary inorganic aerosols. In addition, we illustrate how this modelling capability can inform the design of efficient control strategies by quantifying the effect of different policy measures targeted at specific source sectors, and highlight the role of transboundary air pollution to local air pollution challenges.