H51B-0590:
Transient streaming potentials under varying pore-water ionic strength
H51B-0590:
Transient streaming potentials under varying pore-water ionic strength
Friday, 19 December 2014
Abstract:
Streaming potentials (SP) are generated when polar fluids such as groundwater flow through porous media that have charged mineral surfaces. This is due to the flow-shearing of the diffuse layer of the electric double layer (EDL), which is known to form in the fluid phase at the fluid-rock interface. Previous works have suggested that the EDL vanishes at high pore-fluid ionic strengths resulting in vanishing SP signals. However, recent observations in sea-water intrusion applications by Jackson and coworkers indicate that measurable SP signals are obtainable in flows of fluids with high ionic strengths through silica sand. We demonstrate the repeatability of these observations through a series of laboratory flow experiments performed on 98% silica sand in a falling-head permeameter with brines of concentrations ranging from 0.001M to about 5 M NaCl. The results of the experiments, which clearly show measurable SP signals even at the highest concentration of 5 M NaCl, are reported. They are also used to estimate the hydraulic conductivity and electrokinetic coupling coefficient. The linearity assumption for the relation between pressure and SP differentials is evaluated for high pore-water NaCl concentrations. Additionally, displacement of one brine by another of different NaCl concentration yields dramatic transient SP responses that may be harnessed in the development of early-detection/warning technologies for sea-water intrusion applications.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.