H21A-0708:
Effects of Impurities in CO2 Spreading Model Development for Field Experiments in the Framework of the CO2QUEST Project

Tuesday, 16 December 2014
Dorothee Rebscher1, Jan Lennard Wolf1, Byeongju Jung2, Jac Bensabat3, Raviv Segev3 and Auli P Niemi2, (1)Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover, Germany, (2)Uppsala University, Uppsala, Sweden, (3)Environmental & Water Resources Engineering Ltd. (EWRE), Haifa, Israel
Abstract:
The aim of the CO2QUEST project (Impact of the Quality of CO2 on Storage and Transport) is to investigate the effect of typical impurities in the CO2 stream captured from fossil fuel power plants on its safe and economic transportation and deep geologic storage. An important part of this EU funded project is to enhance the understanding of typical impurity effects in a CO2 stream regarding the performance of the storage. Based on the experimental site Heletz in Israel, where injection tests of water as well as of super-critical pure and impure CO2 will be conducted, numerical simulations are performed. These studies illustrate flow and transport of CO2 and brine as well as impurities induced chemical reactions in relation to changes in the reservoir, e.g. porosity, permeability, pH-value, and mineral composition. Using different THC codes (TOUGH2-ECO2N, TOUGHREACT, PFLOTRAN), the spatial distribution of CO2 and impurities, both in the supercritical and aqueous phases, are calculated. The equation of state (EOS) of above numerical codes are properly modified to deal with binary/tertiary gas mixtures (e.g. CO2-N2 or CO2-SO2). In addition, simulations for a push-pull test of about 10 days duration are performed, which will be validated against experimental field data.

Preliminary results are as follows: (a) As expected, the injection of SO2 leads to a strong decrease in pH-value, hence, the total dissolution of carbonate minerals could be observed. (b) Due to the acidic attack on clay minerals , which is enhanced compared to a pure CO2 dissolution, a higher amount of metal ions are released, in particular Fe2+ and Mg2+ by a factor of 25 and 10, respectively. Whereas secondary precipitation occurs only for sulphur minerals, namely anhydrite and pyrite. (c) The co-injection of CO2 with N2 changes physical properties of the gas mixture. Increasing N2 contents induces density decrease of the gas mixture, resulting in faster and wider plume migration compared to the pure CO2 injection case.