Characterizing the Behavior of NOAA’s Hydrologic Ensemble Forecast Service in California

Thursday, 18 December 2014: 2:10 PM
Minxue He1, Brett Whitin2, James Brown3, Peter Fickenscher2, Arthur Henkel2, Sudhakar Talanki1 and Robert Hartman2, (1)California Department of Water Resources, Sacramento, CA, United States, (2)NOAA/NWS California-Nevada River Forecast Center, Sacramento, CA, United States, (3)Hydrologic Solutions Limited, Southampton, United Kingdom
The National Oceanic and Atmospheric Administration (NOAA)’s National Weather Service (NWS) is implementing the Hydrologic Ensemble Forecast Service (HEFS) across the operating areas of the 13 NWS River Forecast Centers (RFCs). As the implementation progresses, hindcasting and validation is necessary to understand the strengths and weaknesses of the HEFS and to guide its operational use. Particularly in regions such as California that encompass a broad range of elevation, temperature, and precipitation gradients, the quality of the HEFS forecasts will vary geographically, and it is important to understand the degrees and controls on forecast quality in this context. This study aims to develop a comprehensive understanding of the quality of HEFS forecasts in California, with the aim of guiding and enhancing the implementation of the HEFS, as well as informing end-users about the expected quality of the HEFS forecasts. The HEFS was calibrated with temperature and precipitation forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction. Also, in order to determine forecast skill and to benchmark the HEFS against a simpler forecasting system, the HEFS was calibrated with a conditional (“resampled”) climatology. The calibrated HEFS was used to generate retrospective forecasts of precipitation, temperature, and streamflow for a 25-year (1985-2009) period for six basins in the state. The forecast horizon was 1-14 days. The retrospective forecasts were verified conditionally on forecast lead time, magnitude, and season. Preliminary results indicate that HEFS forecasts are much more skillful when forced by inputs from the GEFS, rather than resampled climatology. However, there are noticeable differences in forecast quality among basins. These observations demonstrate the applicability of HEFS in a wide hydroclimatic gradient within California, while highlighting the difficulty in generalizing its behavior across the state.