A time-transgressive Holocene onset from Globorotalia menardii records on Brazilian continental margin sediments

Thursday, 18 December 2014
Fabiane Sayuri Iwai, Karen B Costa, Felipe A L Toledo, Ana C A Santarosa, Cristiano M Chiessi, Edmundo Camillo Jr and Juliana P Quadros, USP University of Sao Paulo, São Paulo, Brazil
The planktic foraminifer Globorotalia menardii presents a cyclic behavior within Pleistocene glacial cycles on Atlantic; it disappears during glacial periods and returns to this ocean after deglaciations. Therefore, G. menardii has been used to identify limits between those cycles and the last limit is recognized as the Holocene onset. The Holocene onset has been reported before as being more than 4 kyrs later than expected at the equatorial Atlantic Ocean based on a G. menardii record (Broecker & Pena, 2014). In this study, we explore the time-transgressive Holocene onset of G. menardii in the Atlantic from 21 piston cores collected along the Brazilian continental margin, between 7 ˚N and 33 ˚S. Radiocarbon dating was conducted on Globigerinoides ruber on samples prior to and after G. menardii reappearance in the cores. Reservoir-age corrected 14C dates vary between 17 and 6.5 cal kyrs; the older ages are found at ~14 ˚S and younger ages at 6 ˚N and 33 ˚S. From these ages and latitudes, we hypothesize that G. menardii’s population has spread at higher rates southward. From the scenario observed on Brazilian coast it is possible to conclude that although ocean circulation has an important role on dispersion of planktonic foraminifera, it may be superimposed by ecological constraints of the species. G. menardii absence during glacials is linked to the Agulhas Leakage activity, which is prevented from getting to the Atlantic due the northern position of the Subtropical Convergence Zone during glacials. On interglacials, warm and saline waters carrying G. menardii are transported into the Subtropical Gyre currents, achieving Brazil's coast through the South Equatorial Current and spreading south and northward through Brazil Current and North Brazil Current, respectively. Nonetheless, from velocity and volume registered for this currents, we would expect a higher G. menardii dispersion rate northward. A faster southward dispersal during the deglaciation suggests water column conditions along the south Brazilian coast were more suitable for this species than along the north coast. Fossil records are likely to be time-transgressive and a synchronous global record cannot be expected from them. Global time-scale boundaries based on the occurrence of fossils, such as the G. menardii biozonation, need to be revisited.