S31E-03:
Offshore Structure of the Cascadia Subduction Zone from Full-wave Tomography

Wednesday, 17 December 2014: 8:30 AM
Haiying Gao, University of Massachusetts Amherst, Amherst, MA, United States
Abstract:
We construct a preliminary offshore model of the crust and uppermost mantle at the Cascadia subduction zone using a full-wave tomographic method. We include the ocean bottom seismometers deployed by the Cascadia Initiative community experiment and Neptune Canada from 2011-2013, and the available broadband stations on land. We have extracted the empirical Green’s functions from continuous seismic records on the vertical components of the OBS and inland station pairs with a frequency-time normalization method, which provide useful Rayleigh-wave signals within the periods of 7-50 s. We have also selected ~50 regional earthquakes between 2011-2013 offshore of the Cascadia subduction zone, which generated useful surface-wave signals up to 75 s period. We simulate wave propagation within a 3D Earth structure using a finite-difference method to generate a station Strain Greens Tensor database and synthetic waveforms. Rayleigh wave phase delays are obtained by cross-correlating the observed and synthetic waveforms. The sensitivity kernels of Rayleigh waves on the perturbations of Vp and Vs are calculated based on the Strain Greens Tensor database. We then invert for the velocity perturbation from the reference model and progressively improve the model resolution. Our preliminary full-wave tomographic imaging using the EGFs and earthquake Rayleigh waves shows: (1) Segmented low-velocity anomalies along the forearc, which are spatially correlated with the patterns of offshore basins and high slip patches; (2) Low velocities beneath the Blanco fracture zone; (3) The distribution of pseudofaults defines the seismic velocity heterogeneities; and (4) A low-velocity zone beneath the oceanic Moho near the trench, which may indicate serpentinization of the mantle lithosphere.