Calculation of Steady-state Evaporation for an Arbitrary Matrix Potential at Ground Surface

Monday, 15 December 2014
Xin Liu, Texas A & M University, College Station, TX, United States and Hongbin Zhan, Texas A&M Univ, College Station, TX, United States
The water loss from soil by evaporation and the amount of ground water available to plants due to the upward movement of water from a water table is an important topic in many disciplines such as soil science, hydrology, and plant physiology. Although water evaporation in actual field setting is a highly complex process, a nearly steady upward flow from a water table to a bare soil surface may be established if the daily evaporative demand is reasonably uniform for a long period of time. While the maximum potential rate of evaporation from the ground surface depends on atmospheric conditions, the actual flux across the soil surface is limited by the ability of the porous medium for transmitting water from the unsaturated zone.

The purpose of this study is to calculate the steady-state evaporation for an arbitrary matrix potential at bare soil surface above a shallow water table, while the unsaturated hydraulic conductivity is a nonlinear function of water content or matrix potential. The Haverkamp function and the Brooks-Corey function for the unsaturated hydraulic conductivity are used, and the study results are contrast among the solution developed from the two retention equation and HYDRUS simulation.