H52A-06:
Interfacial motions and pressure fluctuations during fluid displacement in porous media

Friday, 19 December 2014: 11:50 AM
Denis M O'Carroll, University of Western Ontario, London, ON, Canada, Franziska Moebius, ETH Zurich, Zurich, Switzerland, Kevin G Mumford, Queen's University, Kingston, ON, Canada and Dani Or, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:
Two-phase flow is of interest in many fields including microfluidic devices, geological CO2 sequestration, agriculture, filtration and contaminated site remediation. Macroscopic flow equations are often used to describe two-phase displacement flows in such systems based on constitutive relationships (e.g., capillary pressure-saturation relationships) determined under equilibrium conditions. The potential limitations of such process representation were examined in experiments with direct observation of pore scale dynamics. Transparent sintered glass beads micro-models enabled quantification of the interplay of various phenomena governing fluid flow (e.g., capillary forces, viscous forces, inertial forces). Experiments systematically evaluated the impact of pore water velocity, grain size, surface tension, viscosity and wettability on water pressure and interfacial dynamics, both during flow and after flow cessation. Particular attention was placed on high-velocity conditions, when inertial forces that are not typically considerred in porous media applications can play a larger role. Liquid pressure was quantified at the base of the system and the displacement process was imaged using a high speed camera. Characteristics of pressure fluctuations were strongly linked with interfacial properties with fluctuations manifested during displacement and following flow cessation (pressure relaxation). The patterns of pressure fluctuations varied with boundary conditions and media properties reflecting complex interactions with fluid, surface and dynamics along the displacement front.