OS21A-1114:
Dynamics of Permafrost Associated Methane Hydrate in Response to Climate Change

Tuesday, 16 December 2014
Kehua You and Peter B Flemings, University of Texas at Austin, Austin, TX, United States
Abstract:
The formation and melting of methane hydrate and ice are intertwined in permafrost regions. A shortage of methane supply leads to formation of hydrate only at depth, below the base of permafrost. We consider a system with the ground surface initially at 0 oC with neither ice nor hydrate present. We abruptly decrease the temperature from 0 to -10 oC to simulate the effect of marine regression/ global cooling. A low methane supply rate of 0.005 kg m-2 yr-1 from depth leads to distinct ice and hydrate layers: a 100 m continuous hydrate layer is present beneath 850 m at 80 k.y.. However, a high methane supply rate of 0.1 kg m-2 yr-1 leads to 50 m ice-bonded methane hydrate at the base of permafrost, and the hydrate layer distributes between the depth of 350 and 700 m at 80 k.y..

We apply our model to illuminate future melting of hydrate at Mallik, a known Arctic hydrate accumulation. We assume a 600 m thick ice saturated (average 90%) layer extending downward from the ground surface. We increase the surface temperature linearly from -6 to 0 oC for 300 yr and then keep the surface temperature at 0 oC to reflect future climate warming caused by doubling of CO2. Hydrate melting is initiated at the base of the hydrate layer after 15 k.y.. Methane gas starts to vent to the atmosphere at 38 k.y. with an average flux of ~ 0.35 g m-2 yr-1. If the 600 m thick average ice saturation is decreased to half (45%) (or to zero), methane gas starts to vent to the atmosphere at 29 k.y. (or at 20 k.y.) with the same average flux. These results are found by a newly-developed fully-coupled multiphase multicomponent fluid flow and heat transport model. Our thermodynamic equilibrium-based model emphasizes the role of salinity in both ice and hydrate dynamics.