B33B-0176:
The role of soil hydrologic heterogeneity for modeling large-scale bioremediation protocols.
Abstract:
The major aim of the EU-Life+ project EcoRemed (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS) is the implementation of operating protocols for agriculture-based bioremediation of contaminated croplands, which also involves plants extracting pollutants being then used as biomasses for renewable energy production. The study area is the National Interest Priority Site (NIPS) called Litorale Domitio-Agro Aversano, which is located in the Campania Region (Southern Italy) and has an extent of about 200,000 ectars. In this area, a high-level spotted soil contamination is mostly due to the legal or outlaw industrial and municipal wastes, with hazardous consequences also on the quality of the groundwater.An accurate determination of the soil hydraulic properties to characterize the landscape heterogeneity of the study area plays a key role within the general framework of this project, especially in view of the use of various modeling tools for water flow and solute transport simulations and to predict the effectiveness of the adopted bioremediation protocols.
The present contribution is part of an ongoing study where we are investigating the following research questions: a) Which spatial aggregation schemes seem more suitable for upscaling from point to block support? b) Which effective soil hydrologic characteristic schemes simulate better the average behavior of larger scale phytoremediation processes? c) Allowing also for questions a) and b), how the spatial variability of soil hydraulic properties affect the variability of plant responses to hydro-meteorological forcing?