B51E-0067:
DroughtView: Satellite Based Drought Monitoring and Assessment

Friday, 19 December 2014
Kyle Alan Hartfield, Willem J D Van Leeuwen, Michael Crimmins, Stuart E Marsh, Yuta Torrey, Matt Rahr and Barron Joseph Orr, University of Arizona, Tucson, AZ, United States
Abstract:
Drought is an ever growing concern within the United States and Mexico. Extended periods of below-average precipitation can adversely affect agricultural production and ecosystems, impact local water resources and create conditions prime for wildfire. DroughtView (www.droughtview.arizona.edu) is a new on-line resource for scientists, natural resource managers, and the public that brings a new perspective to remote-sensing based drought impact assessment that is not currently available. DroughtView allows users to monitor the impact of drought on vegetation cover for the entire continental United States and the northern regions of Mexico. As a spatially and temporally dynamic geospatial decision support tool, DroughtView is an excellent educational introduction to the relationship between remotely sensed vegetation condition and drought. The system serves up Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data generated from 250 meter 16-day composite Moderate-resolution Imaging Spectroradiometer (MODIS) imagery from 2000 to the present. Calculation of difference from average, previous period and previous year greenness products provide the user with a proxy for drought conditions and insight on the secondary impacts of drought, such as wildfire. The various image products and overlays are served up via the ArcGIS Server platform. DroughtView serves as a useful tool to introduce and teach vegetation time series analysis to those unfamiliar with the science. High spatial resolution imagery is available as a reference layer to locate points of interest, zoom in and export images for implementation in reports and presentations. Animation of vegetation time series allows users to examine ecosystem disturbances and climate data is also available to examine the relationship between precipitation, temperature and vegetation. The tool is mobile friendly allowing users to access the system while in the field. The systems capabilities and applications will be demonstrated live during the poster session. Expansion of DroughtView includes future plans to add snow products, phenology data and climate scenarios. Extension of the spatial coverage of the data to other parts of the world is also planned.