The Importance of Solar Spectral Irradiance to the Sun-Earth Connection: Lessons-learned from SORCE and Their Relevance to Future Missions

Wednesday, 17 December 2014: 2:25 PM
Jerald William Harder1, Martin A Snow2, Erik C Richard1, Mark Rast1, Aimee W Merkel3 and Thomas N Woods1, (1)Univ Colorado, Boulder, CO, United States, (2)Univ of Colorado, Boulder, CO, United States, (3)University of Colorado at Boulder, LASP, Boulder, CO, United States
The Solar Radiation and Climate Experiment (SORCE) mission has provided for the first time solar spectral irradiance (SSI) observations over a full solar cycle time period with wavelength coverage from the X-ray through the near infrared. This paper will discuss the lessons-learned from SORCE including the need to develop more effective methods to track on-orbit spectroscopic response and sensitivity degradation. This is especially important in using these data products as input to modern day chemistry-climate models that require very broad spectral coverage with moderate-to-high spectral and temporal resolution to constrain the solar component to the atmospheric response. A basic requirement to obtain this essential climate record is to 1) perform preflight radiometric calibrations that are traceable SI standards along with a complete specification of the instruments spectroscopic response, and 2) design the instrument to have the ability to perform instrument-only sensitivity corrections to objectively account for on-orbit degradation. The development of the NIST SIRCUS (National Institute of Science and Technology, Sources for Irradiance and Radiance Calibration with Uniform Sources) now permits the full characterization of the spectral radiometer’s response, and on-orbit degradation characterization through comparisons of redundant detectors and spectrometers appears to be the most practical method to perform these corrections for the near ultraviolet through the near infrared. Going forward, we discuss a compact spectral radiometer development that will couple with advances in CubeSat technology to allow for shorter mission lengths, relatively inexpensive development and launch costs, and reduce the risk of data gaps between successive missions without compromising measurement accuracy. We also discuss the development of a radiometric solar imager that will both greatly improve the interpretation of existing Sun-as-a-star irradiance observations and provide a bridge from our current irradiance capabilities to future high spatial/temporal resolution solar physics assets such as the Daniel K. Inouye Solar Telescope (DKIST).