H11A-0843:
Vertical variation of potential mobility of heavy metal in sediment to groundwater of the Kanto plain, Japan
Monday, 15 December 2014
Sushmita Hossain1, Shoichi Hachinohe2, Takashi Ishiyama2, Hideki Hamamoto2 and Chiaki T Oguchi3, (1)Bangladesh Atomic Energy Commission, Chemistry Division, Dhaka, Bangladesh, (2)Research Institute, Center for Environmental Science in Saitama, Kazo, Japan, (3)Saitama University, Civil and Environmental Engineering, Saitama, Japan
Abstract:
Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.