T21C-4620:
Compound-specific stable isotope records of precipitation isotopes and paleotopographic evolution: Patterns of Cenozoic change in the Western U.S.
Tuesday, 16 December 2014
Michael T Hren, University of Connecticut, Center for Integrative Geosciences, Groton, CT, United States
Abstract:
The topography of an orogen reflects the complex interplay between processes that occur at depth in the crust and processes such as erosion and weathering that shape the surface landscape. Reconstructions of paleotopography are critical for evaluating geodynamic models and separating effects of climatic and tectonic change in terrestrial records. Stable isotope paleoaltimetry has proved to be an important tool for understanding changes in topography through time, however this approach is complicated by factors such as mixing of moisture sources, uncertainty over how uplift impacts air mass transport and resultant isotope hydrology, and debate over what some proxies actually record. Hydrogen isotopes of organic molecules provide a means of reconstructing isotopes of ambient water, but these data are also impacted by factors that affect biological processes and stomatal regulation. Despite the myriad factors that can impact isotope fractionation in plant waxes, a growing body of data show these molecules to be an important record of precipitation isotopes when coupled with data that relates to ecosystem type. This study will examine the distribution of hydrogen isotopes of higher plant waxes across the western U.S. at key intervals of the Cenozoic to provide a snapshot of long-wavelength changes to topography and moisture sources from the Eocene to recent. These data demonstrate the utility of biomarker isotopes as a paleohydrologic/paleotopographic proxy and point to long-standing high topography over much of western U.S. throughout the Cenozoic.