PP33C-1249:
The Influence of True Polar Wander on Climate and Glacial Inception in North America
Wednesday, 17 December 2014
Amy Daradich, University of Ottawa, Ottawa, ON, Canada, Peter J Huybers, Harvard University, Cambridge, MA, United States, Jerry X Mitrovica, Harvard University, Department of Earth and Planetary Sciences, Cambridge, MA, United States and Ngai-Ham Chan, Lunar and Planetary Laboratory, Tucson, AZ, United States
Abstract:
While plate tectonic motions and dynamic topography of continents each reflect an active mantle convective regime, excursions of the Earth’s rotation axis relative to a fixed hotspot reference frame are remarkably muted. Early studies of paleomagnetically inferred pole positions suggested excursions of less than a few degrees [Jurdy and Van Der Voo, 1975]. For this reason, long-term changes in Earth’s rotation, or true polar wander (TPW), were thought to have a negligible role in the observed long-term secular cooling of Earth’s climate through the Tertiary [Donn and Shaw, 1977]. This gradual cooling over the past 65 million years began at a time when much of Earth’s climate was relatively warm and quiescent and culminated in dramatic glacial cycles of the Pleistocene. In contrast to earlier studies, recent reanalyses of paleomagnetic pole positions suggest a secular drift in Earth’s rotation axis of greater than ten degrees in the last 40 million years [Torsvik et al., 2012; Doubrovine et al., 2012]. The direction of this drift brings North America, a site of advancing and retreating ice sheets throughout the Pleistocene, to increasingly higher latitudes. Using an orbital solution valid for the last 50 million years [Laskar et al., 2004], we compute the effect of TPW on insolation quantities for sites in Greenland and the Canadian Arctic Archipelago. Our results indicate that a three degree shift in latitude driven by TPW is comparable to a two degree change in obliquity in terms of its impact on summer energy (i.e. the total energy for the year on days surpassing a given insolation threshold; Huybers, 2006). In addition, we explore climatological gradients using modern climatological data and employ simple climate models to characterize reductions in positive degree days for the North American Arctic over the last 40 million years. We find that TPW and continental drift that moved arctic North America poleward could have driven cooling that contributed to glacial inception ~3 Ma.