Longwall Coal Mining and Soil Moisture Changes in Southwestern Pennsylvania

Tuesday, 16 December 2014
Erin Kathleen Pfeil-McCullough and Daniel Bain, University of Pittsburgh, Pittsburgh, PA, United States
Subsidence from longwall coal mining impacts the surface and sub-surface hydrology in overlying areas. During longwall mining, coal is completely removed in large rectangular panels and the overlying rock collapses into the void. Though the hydrologic effects of longwall mining subsidence have been studied in arid systems, in humid-temperate regions these effects are not well understood. In particular, it is not clear how longwall mining will impact soil moisture patterns. Utilizing simple soil water modeling frameworks (ArcGIS-based Water Balance Toolbox) and the locations of recent long wall mining, potential impacts on soil water availability were predicted at the landscape scale. For example, in areas overlying panel edges, soil available water capacities (AWC) were altered based on several scenarios of AWC change and interactions between aspect driven soil moisture regimes and the mining perturbation were explored over a five year period (2008-2013). The regular patterns of soil moisture arising from insolation contrasts, when interacting with broad-scale longwall mining impacts, are predicted to cause complicated patterns of soil moisture change. These predictions serve as a means to guide field campaigns necessary to understand longwall mining’s hydrologic impacts in wetter climates