OS43B-1273:
A Novel Teflon-membrane Gas Tension Device for Denitrification-studies in Oxygen Minimum Zones

Thursday, 18 December 2014
Andrew C Reed1, Craig L McNeil1, Eric A D'Asaro1, Mark A Altabet2, Bruce Johnson3 and Annie Bourbonnais2, (1)Applied Physics Lab, Univ of Washington, Seattle, WA, United States, (2)University of Massachusetts Dartmouth, New Bedford, MA, United States, (3)Dalhousie University, Halifax, NS, Canada
Abstract:
Oxygen Minimum Zones (OMZs) are global hotspots for the biogeochemical transformation of biologically-available forms of nitrogen to unusable nitrogen-gas. We present a new Teflon-membrane based Gas Tension Device (GTD) for measuring the excess N2 signal generated by denitrification and anammox in OMZs, with a hydrostatic pressure-independent response and a depth range from 0 – 550 m, a significant advancement from previous GTD models. The GTD consists of a 4/1000” thick by 2” diameter Teflon-membrane with a water-side plenum connected to SeaBird 5T pump. Dissolved gases in the water equilibrate across the membrane with a low-dead-volume housing connected to a high-precision quart pressure sensor. Laboratory data characterizing the GTD will be presented. The e-folding (response) time ranges from 14 min at continuous (100%) pumping to 28 min at pulse (10%) pumping. We also demonstrate the pressure dependence of the partial pressures from Henry’s Law in the laboratory for pure nitrogen, pure oxygen, and standard atmospheric ratios of gases. GTD’s were field tested on two floats deployed in the Eastern Tropical North Pacific (ETNP) OMZ for 15 days that targeted a productive mesoscale surface eddy originating from the Mexican coast. We anticipated that high organic carbon export should stimulate denitrification within the OMZ below. The floats profiled between the surface and 400 m depth and concurrently measured T, S, PAR, O2 (SBE 43 and Optode), and nitrate (SUNA). The N2-profiles from the GTDs are validated against independently measured N2/Ar ratio data collected during the deployment.