V51D-4808:
Structural Evolution of Kerogen and Bitumen during Thermal Maturation examined by Fourier-Transform Infrared Spectroscopy

Friday, 19 December 2014
Paul R Craddock, Tuong V Le Doan and Andrew Pomerantz, Schlumberger Cambridge, Cambridge, MA, United States
Abstract:
Kerogen—the organic matter that is solid and insoluble in organic solvents—is a key component of organic-rich mudstones. The composition of kerogen affects the storage and transport of hydrocarbons in these unconventional resources and is known to change with thermal maturity. We report here using FTIR spectroscopy, the compositional characteristics of kerogen as a function of thermal maturity, together with the compositional characteristics of the organic phase, bitumen—the organic matter that is solid, but soluble in organic solvents.

Kerogen is consumed during thermal maturation, whereas bitumen is an intermediary formed at low maturity from kerogen and consumed at higher maturities in formation of oil and gas. Bitumen relative to kerogen has higher aliphatic content, lower aromatic content, and lower abundance of oxygenated functions. At low maturity (vitrinite reflectance equivalent VRe ~ 0.5–0.9 %), the average length of aliphatic chains in bitumen increases during bitumen formation. At higher thermal maturities (VRe > 1.0–1.3 %), average aliphatic chain length decreases as bitumen is consumed. This evolution contrasts to that in kerogen, where aliphatic chain lengths shorten during all stages of maturation. Breakdown of kerogen appears to be driven by cleavage of oxygen functions at low maturity and removal of aliphatic carbons at higher maturities. These aliphatic-rich fragments may comprise the bitumen, and may in part explain the solubility of bitumen in organic solvents. Bitumen shows evidence of oxidation at low thermal maturity, a phenonemom not documented for kerogen. Bitumen maturation and degradation at higher thermal maturity is driven by cleavage and loss of aliphatic carbons, and is coincident with the maximum generation of oil and gas. The aromatic content of bitumen and of kerogen both increase during maturation as a consequence of the loss of aliphatic carbon. The oil and gas generation potential of the residual organic matter thus decreases during maturation. These results enhance our knowledge of the molecular-level evolution of kerogen and bitumen under thermal stress and of oil and gas generation in organic-rich mudstones.