S12B-02:
Posthole Sensor Performance in the USArray Transportable Array – Results from Testing and Initial Deployments in Alaska and Canada

Monday, 15 December 2014: 10:35 AM
Andrew Frassetto1, Robert W Busby1, Katrin Hafner1, Allan Sauter2 and Robert Woodward1, (1)IRIS Consortium, Washington, DC, United States, (2)IRIS/PASSCAL, Socorro, NM, United States
Abstract:
To prepare for the deployment of EarthScope’s USArray Transportable Array (TA) in Alaska and adjacent Canada over the next several years, IRIS has evaluated different strategies for emplacing posthole seismometers. The goal of this work has been to maintain or enhance a TA station’s noise performance while reducing the weight and logistical considerations required for its installation. Motivating this research are developments in posthole broadband seismometer design and the unique conditions for operating in this region, where many potential sites are located on frost-fractured outcrops or underlain by permafrost, in either case only accessible by helicopter.

Current emplacement methods use a portable rig to auger or hammer-drill a hole 2.5-5 meters deep, in unconsolidated materials and permafrost, or by diamond bit coring 1-3 meters into rock. These emplacements are used at new TA installations and upgrades to existing AK network stations, and we compare their performance to the lower-48 TA vault installations. Through July 2014 there are eight TA and six upgraded AK stations operating under USArray; including five since at least October 2012, providing a detailed record of seasonal and/or site-specific behavior. We also discuss testing of different downhole configurations for 13 stations deployed at Piñon Flat Observatory in California since April 2014.

Station performance is presented and compared using probability density functions summed from hourly power spectral density calculations. These are computed for the continuous time series of seismic data recorded on each seismic channel. Our results show that the noise performance of seismometers in Alaska with cased- or core- hole installations sometimes exceeds that of the quietest TA stations in the lower-48, particularly for the horizontal channels at long periods. We analyze and discuss the performance of example stations, comparing to other nearby seismometers. We also examine the performance of AK stations before and after they have been converted from surface vault to posthole configuration. At Piñon Flat, different methods for packing the seismometer and clamping its cables within cased holes has guided development of field procedure. The new posthole emplacements generally improve upon the mean performance of the lower-48 TA vaults.