Changes in Ice Flow Dynamics of Totten Glacier, East Antarctica and Impacts on Ice Mass Balance

Tuesday, 16 December 2014
Xin Li, Eric J Rignot, Jeremie Mouginot, Bernd Scheuchl and Lu An, University of California Irvine, Irvine, CA, United States
Totten Glacier, East Antarctica is one of the largest glaciers in Antarctica, draining an area of 5.3*105 km2 and containing ice at an equivalent 9 m sea level rise. Lidar/radar altimetry data from 2003-2009 suggests that the glacier is thinning. Thinning is concentrated in areas of fast flow and therefore indicative of changes in ice dynamics. Here, we employ time series of ice velocity from ERS-1/2, RADARSAT-1, LANDSAT-7, ALOS PALSAR, TanDEM/TerraSAR-X and COSMO-Skymed to measure the glacier velocity from 1996 till present. We find significant temporal changes in ice velocity, especially in 1996-2007, followed by a period of slow decrease in 2010-2013. Comparing the results with RACMO2 surface mass balance in the interior suggests that the glacier mass balance was already negative in 1996 and became more negative into the 2000s. The resulting mass loss and stretching of the ice is compatible with the 1.5 m/yr thinning detected by the radar altimeters near the grounding zone. The grounding zone of the glacier includes a vast 15 km long ice plain where the glacier is only grounded a few 10m above hydrostatic equilibrium. We detect a retreat of the region of partial floatation with time, but not solid migration of the grounding line of the glacier. Inverted bathymetry results from gravity data collected offshore suggest the presence of a paleo subglacial channel conducive to the transfer of surface ocean heat, likely diluted circumpolar deep water, whose transfer to the ice shelf cavity may have affected the glacier stability. We suggest that further transfer of ocean heat to the ice shelf could trigger a rapid glacier retreat in this region.