A33L-3375:
Response of Seasonal Atlantic Tropical Cyclone Activity to Suppression of African Easterly Waves in a Regional Climate Model

Wednesday, 17 December 2014
Christina M Patricola, Ramalingam Saravanan and Ping Chang, Texas A&M University, College Station, TX, United States
Abstract:
Atlantic tropical cyclones and African easterly waves (AEWs) are strongly linked on the synoptic timescale, with about 85% of observed major Atlantic hurricanes originating from AEWs (e.g., Landsea et al. 1993). However, the influence of variability in AEWs on seasonal Atlantic tropical cyclone activity is not fully understood; a positive correlation between AEW activity and Atlantic tropical cyclone activity exists on the interannual timescale during just some periods of the observational record (e.g., Thorncroft and Hodges, 2001; Hopsch et al. 2007).

This study investigates the impact of AEWs on seasonal Atlantic tropical cyclone activity using regional climate model simulations in which AEWs were either prescribed or removed through the lateral boundary condition (LBC). The control simulation (10-member ensemble) was run at 27 km resolution and used 6-hourly LBCs from the NCEP CFS Reanalysis and daily NOAA Optimum Interpolation (OI) V2 sea surface temperature (SST) from the year 2005. In the experiment AEWs were suppressed by filtering 2-10 day variability over tropical latitudes from the eastern LBC, located along the west coast of the Sahel.

The difference in Atlantic tropical cyclone frequency was insignificant between the simulations in which AEWs were prescribed versus suppressed, indicating that AEWs are not necessary to maintain climatological tropical cyclone frequency even though tropical cyclones readily originate from these features. This further implies that seasonal Atlantic tropical cyclone frequency is uninfluenced by variability in AEWs, and that the value of AEW variability as a predictor of Atlantic tropical cyclones is limited to the weekly timescale. However in response to filtering AEWs, accumulated cyclone energy significantly increased by about 15% of the control simulation mean and the spatial pattern of track density shifted in association with changes in steering winds. This suggests the importance of AEWs in impacting tropical cyclone tracks through their influence on the large-scale circulation via wave-mean flow interaction.