PA23A-04:
Induced Seismicity: Balancing the Scientific Process With the Need for Rapid Communication of Evolving Seismic Hazards

Tuesday, 16 December 2014: 3:10 PM
Elizabeth S Cochran1, William L Ellsworth2, Andrea L Llenos3 and Justin L Rubinstein2, (1)Organization Not Listed, Washington, DC, United States, (2)USGS California Water Science Center Menlo Park, Menlo Park, CA, United States, (3)USGS, Baltimore, MD, United States
Abstract:
In this presentation, we outline the USGS response to dramatically increased earthquake activity in the central and eastern US, with a focus on Oklahoma. Using the November 2011 Prague, OK earthquake sequence as an example, we describe the tensions between the need to conduct thorough scientific investigations while providing timely information to local, state, and federal government agencies, and the public. In the early morning hours of November 5, 2011 a M4.8 earthquake struck near the town of Prague, Oklahoma and was followed by a M5.6 earthquake just over 20 hours later. The mainshock was widely felt across the central US, causing damage to homes close to the epicenter and injuring at least 2 people. Within hours of the initial event several portable instruments were installed and following the mainshock a larger seismic deployment was mounted (Keranen et al., 2013). A sizeable earthquake in the central or eastern US is always of scientific interest due to the dearth of seismic data available for assessing seismic hazard. The Prague sequence garnered especially strong scientific and public interest when a link between the sequence and injection of wastewater at several local deep wells was postulated. Therefore, there was a need to provide immediate information as it became available. However, in the first few days to months it was impossible to confidently confirm or refute whether the seismicity was linked to injection, but it was known that the foreshock occurred close to several deep injection wells and many of the events were shallow; thus, the sequence warranted further study. Over the course of the next few years, several studies built the case that the Prague sequence was likely induced by wastewater injection (Keranen et al., 2013; Sumy et al., 2014; McGarr, 2014) and additional studies suggested that the changes in seismicity throughout Oklahoma were not due to natural variations in seismicity rates (Llenos and Michael, 2013; Ellsworth, 2013). These studies changed the public discourse from providing primary information about the on-going earthquake sequences to how to mitigate the hazard associated with wastewater injection. And, scientific studies are now focused on how to include the impact of induced events within the National Seismic Hazard Maps (e.g. Peterson et al., 2014).