T13D-05:
Constraints on Age of India-Asia Collision and Pre-Collisional Subduction Metamorphism from the Sangsang Region, South Central Tibet
Monday, 15 December 2014: 2:40 PM
Nathaniel Borneman, Kip V Hodges, Matthijs C Van Soest and Jo-Anne Wartho, Arizona State University, Tempe, AZ, United States
Abstract:
A common feature of continental collision zones is the entrainment of ophiolitic and subduction complex rock units. The crystallization and metamorphic ages of these units provide important constraints on both subduction zone evolution and the maximum age of ophiolite obduction. Ophiolites and subduction complexes have been well described in the Yarlung Tsangpo suture zone (YTSZ), but thus far relatively few high-pressure, low-temperature metamorphic assemblages from within the suture zone have been documented and successfully dated. Here we present structural, petrologic, and chronologic data from a recently discovered subduction complex occurrence of high-pressure (blueschist facies) rocks along the YTSZ in south central Tibet (29.31º N, 86.68º E). Mapping of the complex based on ASTER satellite image analysis as well as field work enabled the identification of four major lithostratigaphic units; from structurally highest to lowest, they are: 1) forarc affinity Chengdoi sandstones 2) a variably serpentinized ophiolitic fragment; 3) a structural mélange of blueschist-facies metabasic and metaclastic rocks; and 4) sandstones containing serpentinite and rutile detritus. The second and third of these tectonostratigraphic units are separated by thrust faults, whereas the Chengdoi sandstones unconformably overlie the ophiolitic fragment. We interpret the thrust separating the blueschists from the ophiolites as a paleo-subduction zone that dips northward when the entire section is rotated to restore the Chengdoi formation to horizontal. The subduction complex is further disrupted by oblique faults, including some with apparent normal sense offset that may be pre-collisional, intraoceanic normal faults. U/Pb zircon dating of the blueschist facies metavlocanic rocks implies a ca. 111 Ma protolith age, while a ca. 65 Ma 40Ar/39Ar amphibole date from one blueschist sample is interpreted as representing a close approximation of the timing of high-pressure metamorphism given Zr-in-rutile constraints on maximum metamorphic temperatures of ≤ 540˚C. The metamorphic age also constrains suturing along this segment of the YTSZ to have postdated the Cretaceous-Tertiary boundary.