P21E-06:
Ammonium Hydrosulfide and Jupiter’s Great Red Spot

Tuesday, 16 December 2014: 9:15 AM
Mark J Loeffler1, Reggie Hudson1, Nancy Chanover2 and Amy A Simon1, (1)NASA Goddard Space Flight Center, Greenbelt, MD, United States, (2)New Mexico State University Main Campus, Department of Astronomy, Las Cruces, NM, United States
Abstract:
The color and composition of Jupiter’s Great Red Spot (GRS) has been debated for more than a century. While there are numerous hypotheses for the origin of Jupiter’s GRS, recent work suggests that the GRS’s color could originate from multiple components (Carlson et al., 2012; Simon et al., submitted). In light of this, we have recently begun conducting in situ laboratory experiments that test whether ammonium hydrosulfide, NH4SH, or its radiation decomposition products contribute to the GRS spectrum. In this presentation, we will discuss some of our most recent results, where we have studied the stability of NH4SH samples as a function of temperature using infrared and mass spectrometry. Funding for this work has been provided by NASA’s Planetary Atmospheres and Outer Planets Research programs.

References

Carlson, R. W., K. H. Baines, M. S. Anderson, G. Filacchione. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter’s Great Red Spot, DPS, 44, 2012.

Simon, A. A., J. Legarreta, F. Sanz-Requena, S. Perez-Hoyos, E. Garcia-Melendo, R. W. Carlson. Spectral Comparison and Stability of Red Regions on Jupiter. J. Geophys. Res. - Planets, submitted.