OS23B-1185:
In-situ Observations of Swash-zone Flow Velocities and Sediment Transport on a Steep Beach
Tuesday, 16 December 2014
Patricia Chardon-Maldonado, Center for Applied Coastal Research, University of Delaware, Newark, DE, United States, Jack Anthony Puleo, Univ of DE-Civil & Envir Engrg, Newark, DE, United States and Jens Figlus, Texas A & M University at Galveston, Galveston, TX, United States
Abstract:
A 45 m scaffolding frame containing an array of instruments was installed at South Bethany Beach, Delaware, to obtain in-situ measurements in the swash zone. Six cross-shore stations were established to simultaneously measure near-bed velocity profiles, sediment concentration and water level fluctuations on a steep beach. Measurements of swash-zone hydrodynamics and morphological change were collected from February 12 to 25, 2014, following a large Nor’easter storm with surf zone significant wave height exceeding 5 m. Swash-zone flow velocities (u,v,w) were measured at each cross-shore location using a Nortek Vectrino profiling velocimeter that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles were used to quantify the vertical flow structure over the foreshore and estimate hydrodynamic parameters such as bed shear stress and turbulent kinetic energy dissipation. Sediment concentrations were measured using optical backscatter sensors (OBS) to obtain spatio-temporal measurements during both uprush and backwash phases of the swash cycle. Cross-shore sediment transport rates at each station were estimated by taking the product of cross-shore velocity and sediment concentration. Foreshore elevations were sampled every low tide using a Leica GPS system with RTK capability. Cross-shore sediment transport rates and gradients derived from the velocities and bed shear stress estimates will be related to the observed morphological change.