GC11B-0552:
Dissolved Organic Carbon Degradation in Response to Nutrient Amendments in Southwest Greenland Lakes

Monday, 15 December 2014
Benjamin Todd Burpee1, Robert Northington1, Kevin S Simon2 and Jasmine E Saros1, (1)University of Maine, Orono, ME, United States, (2)University of Auckland, Auckland, New Zealand
Abstract:
Aquatic ecosystems across the Arctic are currently experiencing rapid shifts in biotic, chemical, and physical factors in response to climate change. Preliminary data from multiple lakes in southwestern Greenland indicate decreasing dissolved organic carbon (DOC) concentrations over the past decade. Though several factors may be contributing to this phenomenon, this study attempts to elucidate the potential of heterotrophic bacteria to degrade DOC in the presence of increasing nutrient concentrations. In certain Arctic regions, nutrient subsidies have been released into lakes due to permafrost thaw. If this is occurring in southwestern Greenland, we hypothesized that increased nutrient concentrations will relieve nutrient limitation, thereby allowing heterotrophic bacteria to utilize DOC as an energy source. This prediction was tested using experimental DOC degradation assays from four sample lakes. Four nutrient amendment treatments (control, N, P, and N + P) were used to simulate in situ subsidies. Five time points were sampled during the incubation: days 0, 3, 6, 14, and 60. Total organic carbon (TOC) and parallel factor (PARAFAC) analysis were used to monitor the relative concentrations of different DOC fractions over time. In addition, samples for extracellular enzyme activity (EEA) analysis were collected at every time point. Early analysis of fulvic and humic pools of DOC do not indicate any significant change from days 0 to 14. This could be due to the fact that these DOC fractions are relatively recalcitrant. This study will be important in determining whether bacterial degradation could be a contributing factor to DOC decline in arctic lakes.