Albedo of Surface CO2 Deposits in Mars' Residual South Polar Cap

Friday, 19 December 2014
Philip B James, Space Science Institute Boulder, Brookfield, WI, United States, Michael J Wolff, Space Science Institute Boulder, Boulder, CO, United States and Boncho Bonev, Organization Not Listed, Washington, DC, United States
The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer. We consider possible modifications of the dust only model that could explain the discrepancy.