Cryospheric Applications of Modern Airborne Photogrammetry

Wednesday, 17 December 2014
Matt Nolan, University of Alaska Fairbanks, Fairbanks, AK, United States
Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider.  The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.