EP44B-05:
Bedform dynamics in a large sand-bedded river using multibeam echo sounding
Thursday, 18 December 2014: 5:00 PM
Caroline M Elliott1, Robert B Jacobson2, Susannah Erwin3, Allen B. Eric1 and Aaron J. DeLonay1, (1)U. S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States, (2)USGS, Columbia, MO, United States, (3)US Geological Survey, Columbia, MO, United States
Abstract:
High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900’s for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.