H51B-0610:
Multiporosity Flow of Gases in Tight Shale Formations

Friday, 19 December 2014
Kristopher L Kuhlman, Jason E Heath, Payton Gardner and David G Robinson, Sandia National Laboratories, Albuquerque, NM, United States
Abstract:
Flow and transport in low-permeability fractured systems is important in both groundwater applications and low-permeability hydrocarbon systems. We have adapted the multirate solute transport model to the flow of single-phase natural tracers in low-permeability hydrocarbon source rocks, termed the multiporosity model. We illustrate the ability of the multiporosity model to generalize double-porosity models, of both the pseudo-steady (e.g., Warren and Root) and transient (Kazemi) interporosity flow types. We use the model to explore both production (pressure and flowrate) and compositional data obtained from tight gas shale formations using a Baeysian uncertainty quantification approach.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.