S31A-4379:
Predicting injection related changes in seismic properties at Kevin Dome, north central Montana, using well logs and laboratory measurements

Wednesday, 17 December 2014
Seth Saltiel, Brian P Bonner and Jonathan Blair Ajo Franklin, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Abstract:
Time-lapse seismic monitoring (4D) is currently the primary technique available for tracking sequestered CO2 in a geologic storage reservoir away from monitoring wells. The main seismic responses to injection are those due to direct fluid substitution, changes in differential pressure, and chemical interactions with reservoir rocks; the importance of each depends on reservoir/injection properties and temporal/spatial scales of interest. As part of the Big Sky Carbon Sequestration Partnership, we are monitoring the upcoming large scale (1 million ton+) CO2 injection in Kevin Dome, north central Montana. As part of this research, we predict the relative significance of these three effects, as an aid in design of field surveys. Analysis is undertaken using existing open-hole well log data and cores from wells drilled at producer and injector pads as well as core experiments. For this demonstration site, CO2 will be produced from a natural reservoir and re-injected down dip, where the formation is saturated with brine.

Effective medium models based on borehole seismic velocity measurements predict relatively small effects (less than 40 m/s change in V¬p) due to the injection of more compressible supercritical CO2. This is due to the stiff dolomite reservoir rock, with high seismic velocities (Vp~6000 m/s, Vs~3000 m/s) and fairly low porosity (<10%). Assuming pure dolomite mineralogy, these models predict a slight increase in Vp during CO2 injection. This velocity increase is due to the lower density of CO2 relative to brine; which outweighs the small change in modulus compared to the stiff reservoir rock.

We present both room pressure and in-situ P/T ultrasonic experiments using core samples obtained from the reservoir; such measurements are undertaken to access the expected seismic velocities under pressurized injection. The reservoir appears to have fairly low permeability. Large-volume injection is expected to produce large local pore pressure increases, which may have the largest immediate effect on seismic velocities. Increasing pore pressure lowers the differential pressure due to confining stress, which decreases seismic velocities by opening cracks. The magnitude of this effect depends both on rock microstructure and fracture at the field scale; core scale measurements will help separate these effects.