DI43A-4355:
New Insights into the Morphology of the Galapagos Platform from Lower Crustal Flow Models

Thursday, 18 December 2014
Felipe Orellana Rovirosa and Mark A Richards, University of California Berkeley, Berkeley, CA, United States
Abstract:
The volcanically-active Galapagos Islands are constructed upon a broad platform, with the westernmost islands being the most active, marking the present-day position of the Galapagos hotspot (mantle plume). This volcanic platform overlies relatively young oceanic lithosphere (<15 Myr) and exhibits unique morphologic features along its boundaries. The most spectacular of these features is a system of stepped terraces on the southwestern escarpment, with very large vertical relief (>3 km), and contrasting with relatively gentle slopes off the eastern platform edge toward the Carnegie ridge. Considering the horizontal lithostatic pressure differences associated with this bathymetric relief, along with the high temperatures within this young, hotspot-affected oceanic lithosphere and crust; it is likely that lower crustal flow contributes significantly, perhaps even dominantly, to lithospheric and crustal deformation within the Galapagos Platform. Using 2D numerical models that invoke a thin-sheet approximation for the Stokes' equation for a Newtonian fluid with space- and time-dependent viscosity, and assuming isostatic conditions, we show that: (1) the pronounced bathymetric rim along the Eastern platform region (where gravimetric studies indicate Airy isostasy) near Española Island may be the expression of a mature stage of a lower crustal flow front evolving asymptotically during the last ~3 Myr; (2) the spectacular system of stepped terraces along the southwestern edge of the platform may be explained by lower crustal flow-associated backward tilting of the bathymetric surface that, even with small amounts of angular change (~0.1 deg) and potentially occurring in non-isostatic regimes, effectively hinders the horizontal flow of lava. This process of backward-tilting may have been largely restricted to the last ~1 Myr of platform growth, and hence may be a unique event that may involve horizontal extrusion of large lava sheets from within the southwestward-marching lower-crustal flow front.