H11H-0992:
Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CH4 and CH4/CO2 Mixtures: Implications for CO2-Enhanced Gas Production

Monday, 15 December 2014
John Loring, Christopher Thompson, Eugene S. Ilton, B. Pete McGrail and Todd Schaef, Pacific Northwest National Laboratory, Geochemistry, Richland, WA, United States
Abstract:
Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2-enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of a Na-saturated montmorillonite (Na-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane and mixtures of methane and carbon dioxide were investigated using in situ IR spectroscopic titrations and in situ XRD. The goals were to (1) determine if the hydration/expansion behavior of the clay in supercritical methane is different than in supercritical CO2, (2) determine if methane intercalates the clay, and (3) probe the effects of increasing CO2 concentrations. IR spectra were collected as Na-SWy-2 was titrated with water under several fluid exposures: pure methane, 25, 50, and 75 mole% CO2 in methane, and pure CO2. Complementary in situ XRD experiments were conducted in the same fluids at discrete dissolved water concentrations to measure the d001 values of the clay and thus its volume change on hydration and CH4 and/or CO2 intercalation. In pure methane, no direct evidence of CH4 intercalation was detected in CH bending or stretching regions of the IR spectra. Similarly, in situ XRD indicated the montmorillonite structure was stable in the presence of CH4 and no measurable changes to the basal spacing were observed. However, under low water conditions where the montmorillonite structure was partially expanded (~sub 1W), the IR data indicated a rapid intercalation of CO2 into the interlayer, even with fluid mixtures containing the lowest concentrations of CO2. Likewise, in situ XRD showed indirect evidence of CO2 intercalation from an increase in the basal spacing from 11.8 to 12.3 Å under identical conditions. These findings demonstrate that water and CO2 intercalation processes could lead to permeability changes that directly impact methane transmissivity in shales.