T11A-4544:
Updated mapping and seismic reflection data processing along the Queen Charlotte fault system, southeast Alaska

Monday, 15 December 2014
Maureen A L Walton1, Sean P S Gulick1, Peter J Haeussler2, Kristin Rohr3, Emily C Roland4 and Anne M Trehu5, (1)University of Texas at Austin, Institute for Geophysics, Austin, TX, United States, (2)USGS Alaska Science Center, Anchorage, AK, United States, (3)Kristin Rohr Consulting, Victoria, BC, Canada, (4)University of Washington Seattle Campus, School of Oceanography, Seattle, WA, United States, (5)Oregon State University, Corvallis, OR, United States
Abstract:
The Queen Charlotte Fault (QCF) is an obliquely convergent strike-slip system that accommodates offset between the Pacific and North America plates in southeast Alaska and western Canada. Two recent earthquakes, including a M7.8 thrust event near Haida Gwaii on 28 October 2012, have sparked renewed interest in the margin and led to further study of how convergent stress is accommodated along the fault. Recent studies have looked in detail at offshore structure, concluding that a change in strike of the QCF at ~53.2 degrees north has led to significant differences in stress and the style of strain accommodation along-strike. We provide updated fault mapping and seismic images to supplement and support these results.

One of the highest-quality seismic reflection surveys along the Queen Charlotte system to date, EW9412, was shot aboard the R/V Maurice Ewing in 1994. The survey was last processed to post-stack time migration for a 1999 publication. Due to heightened interest in high-quality imaging along the fault, we have completed updated processing of the EW9412 seismic reflection data and provide prestack migrations with water-bottom multiple reduction. Our new imaging better resolves fault and basement surfaces at depth, as well as the highly deformed sediments within the Queen Charlotte Terrace.

In addition to re-processing the EW9412 seismic reflection data, we have compiled and re-analyzed a series of publicly available USGS seismic reflection data that obliquely cross the QCF. Using these data, we are able to provide updated maps of the Queen Charlotte fault system, adding considerable detail along the northernmost QCF where it links up with the Chatham Strait and Transition fault systems. Our results support conclusions that the changing geometry of the QCF leads to fundamentally different convergent stress accommodation north and south of ~53.2 degrees; namely, reactivated splay faults to the north vs. thickening of sediments and the upper crust to the south. We also highlight areas where additional data are needed and would be ideal targets for future study.