Paleoenvironmental responses to Late Cretaceous Oceanic Anoxic Event 2 on the Kerguelen Plateau

Monday, 15 December 2014: 10:50 AM
Alex Dickson1, Matthew Saker-Clark1, Hugh C Jenkyns1, Elisabetta Erba2, Cinzia Bottini2, Melissa J Murphy1, Olga Gorbanenko3, Erdem Idiz4 and Sander van den Boorn4, (1)University of Oxford, Oxford, United Kingdom, (2)University of Milan, Milan, Italy, (3)University of Tuebingen, Tuebingen, Germany, (4)Shell Global Solutions International, Rijswijk, Netherlands
Oceanic Anoxic Event 2 (OAE-2, ~94 Ma: late Cretaceous) was characterized by a perturbation in seawater chemistry, an expansion of marine anoxia and euxinia, an increase in marine organic-carbon burial, a decrease in atmospheric pCO2 during an interval of high global temperatures, an extinction event among marine organisms, and changes in weathering intensity. However, many of the most detailed studies of OAE-2 are from the northern hemisphere, and consequently how global environmental changes were expressed at the local and regional scale in the southern hemisphere is poorly understood.

A detailed geochemical, petrographic and micropalaeontological dataset from Ocean Drilling Program Site 1138 on the Kerguelen Plateau, southern Indian Ocean (53.5oS paleolatitude), identifies OAE-2 from a 3‰ positive carbon-isotope excursion (CIE) and from high-resolution nannofossil biostratigraphy. An enrichment of organic carbon (to ~15%) corresponds with a shift towards locally sub-oxic/anoxic conditions, as recorded by trace-metal enrichments and molybdenum-isotope compositions. The redox changes coincide stratigraphically with an abrupt decline in the delivery of highly weathered detrital material and terrestrial organic matter to Site 1138. A rapid relative sea-level rise occurring around the onset of OAE-2 could have reduced the input of highly weathered detrital sediments, while moving the local seafloor deeper into an oxygen minimum zone impinging on the margins of the Kerguelen Plateau. Alternatively, or additionally, intensified mid-latitude hydrological cycling in the early stages of OAE-2 could have rapidly destabilized terrestrial sediments from sub-aerial landmasses on the Kerguelen Plateau. In either case, the new datasets highlight the abrupt nature of the palaeoenvironmental response to OAE-2 in the mid-latitude southern hemisphere.