P51A-3903:
Aligned Olivine in the Springwater Pallasite

Friday, 19 December 2014
Neva Fowler-Gerace1, Kimberly Tait1,2, Desmond Moser3, Ivan Barker3 and Bob Yunsheng Tian1, (1)University of Toronto, Toronto, ON, Canada, (2)Royal Ontario Museum, Toronto, ON, Canada, (3)University of Western Ontario, London, ON, Canada
Abstract:
The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Klosterman and Buseck [1] found no crystallographic preferred orientation of olivine in nine pallasites, but the Leitz five-axis universal stage method imposed limitations on precision (estimated within ∼4◦) and sample size (only 10 crystals were measured in the Springwater pallasite, for instance). Using Electron Backscatter Diffraction, we have collected crystallographic orientation data (accurate to ±0.5◦ [2]) for 343 crystals within ∼65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally-defined domains. Combined with our thorough characterization of large-scale Springwater textures, the definitively non-random spatial distribution of olivine orientations reveals the nature of the olivine’s initial formation environment as well as the sequence of events subsequent to metal incorporation.

[1] Klosterman and Buseck. 1973. J Geophys Res 78(32):7581-7588. [2] Oxford Instruments. 2013. http://www.ebsd.com/.