SH33A-4133:
Multi-spacecraft Observations of Heavy Ion Dropouts: Physical Processes, Fractionation Rates, and Release Mechanisms

Wednesday, 17 December 2014
Micah J Weberg1, Susan T Lepri2 and Thomas Zurbuchen2, (1)University of Michigan, Ann Arbor, MI, United States, (2)Univ Michigan, Ann Arbor, MI, United States
Abstract:
Heavy ion dropouts in the solar wind are thought to originate from large, closed coronal loops. The distinctive, mass-dependent fractionation patterns of the dropouts requires that their source loops are relatively quiet and stable long enough (on the order of a day) to undergo gravitational settling. Therefore by studying the composition of heavy ion dropouts we are able to peer into the solar corona and glean information about the fine balance of physical processes. Additionally, the occurrence rates and magnetic profiles of dropouts suggest specific forms of magnetic reconnection are responsible for the release of the otherwise trapped plasma into the solar wind.

In this study we identify and compare dropouts observed by two different satellites, ACE and Ulysses, which together provide over 20 years of continuous observations at a variety of heliographic latitudes and radii. The resulting partial global view (or 3D view) enables us to identify coronal source regions and release mechanisms of heavy ion dropouts. We also discuss a physical model of gravitational settling which can be used to reconcile fractionation rates with the rate at which plasma must be escaping via reconnection. Our conclusions and results may contribute towards the ongoing refinement and validation of theories which predict the origin of “slow type” solar wind.