Waxing and Waning of Forests: Late Quaternary Biogeography of Lake Malawi, Southeast Africa

Wednesday, 17 December 2014: 8:36 AM
Sarah Ivory, Brown University, Providence, RI, United States, Anne-Marie Lézine, LOCEAN, Paris Cedex 05, France, Annie Vincens, CEREGE, Aix-en-Provence, France and Andrew S Cohen, University of Arizona, Department of Geosciences, Tucson, AZ, United States
African ecosystems are at great risk due to climate and land-use change. Despite the status of several of these regions as biodiversity hotspots, long-standing ideas about African ecology and biogeography have been unable to be tested until now due to lack of sufficiently long records. Here, we present the first long, continuous terrestrial record of vegetation from Lake Malawi, East Africa which goes back to the early Late Quaternary, permitting us to investigate changes in physiognomy and forest composition over many transitions. In this record, we observe eight phases of forest expansion and collapse. Although diversity is much greater during forest phases, composition varies little from phase to phase. Very high abundances of afromontane taxa suggest frequent widespread colonization of the lowlands by modern high elevation trees. Although there are clear successional stages within each forest such that turnover is great within a single phase, among forest samples between phases, there is little dissimilarity. Each forest phase is interrupted by rapid decline of arboreal taxa and expansion of semi-arid grasslands or woodlands whose composition varies greatly from phase to phase. The variable composition of the more open phases, all occurring during arid periods, is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling within the watershed. This vegetation is unlike any found at Malawi today, with assemblages suggesting strong Somali-Masai affinities. Furthermore, nearly all semi-arid assemblages contain small abundances of forest taxa typically growing in areas with wetter edaphic conditions, suggesting that moist lowland gallery forests were present but restricted to waterways during exceptionally arid times. The waxing and waning of forests throughout this interval has important implications for early human biogeography across Africa as well as disturbance regimes that are crucial for the maintenance of modern East African landscapes.