EP23B-3599:
Investigating the influence of subsurface heterogeneity on chemical weathering in the critical zone using high resolution reactive transport models

Tuesday, 16 December 2014
Sachin Pandey and Harihar Rajaram, University of Colorado at Boulder, Boulder, CO, United States
Abstract:
The critical zone (CZ) represents a major life-sustaining realm of the terrestrial surface. The processes controlling the development and transformation of the CZ are important to continued health of the planet as human influence continues to grow. The CZ encompasses the shallow subsurface, a region of reaction, unsaturated flow, and transport. Chemical weathering in the subsurface is one of the important processes involved in the formation and functioning of the CZ. We present two case studies of reactive transport modeling to investigate the influence of subsurface heterogeneity and unsaturated flow on chemical weathering processes in the CZ. The model is implemented using the reactive transport code PFLOTRAN. Heterogeneity in subsurface flow is represented using multiple realizations of conductive fracture networks in a hillslope cross-section. The first case study is motivated by observations at the Boulder Creek Critical Zone Observatory (BCCZO) including extensive hydrologic and geochemical datasets. The simulations show that fractures greatly enhance weathering as compared to a homogeneous porous medium. Simulations of north-facing slope hydrology with prolonged snowmelt pulses also increases weathering rates, showing the importance of slope aspect on weathering intensity. Recent work elucidates deteriorating water quality caused by climate change in the CZ of watersheds where acid rock drainage (ARD) occurs. The more complex reactions of ARD require a customized kinetic reaction module with PFLOTRAN. The second case study explores the mechanisms by which changes in hydrologic forcing, air and ground temperatures, and water table elevations influence ARD. For instance, unreacted pyrite exposed by a water table drop was shown to produce a 125% increase in annual pyrite oxidization rate, which provides one explanation for increased ARD.