From pumice to obsidian: eruptive behaviors that produce tephra-flow dyads. I- The AD1100 Big Glass Mountain eruption at Medicine Lake Volcano (California).

Monday, 15 December 2014: 5:15 PM
Thomas Shea, SOEST, Honolulu, HI, United States, Thomas Giachetti, Rice UNiversity, Houston, TX, United States, Helge Martin Gonnermann, Rice University, Houston, TX, United States, Julie M Donnelly-Nolan, USGS, Menlo Park, CA, United States and David W Ramsey, USGS, Vancouver, WA, United States
Associations of tephra and lava flow/domes produced by eruptions involving evolved magmas are a common occurrence in various types of volcanic settings (e.g. Pu’u Wa’awa’a ~114ka, Hawaii; South Mono ~AD625, California; Newberry Big Obsidian flow ~AD700, Oregon; Big Glass Mountain ~AD1100, California; Inyo ~AD1350, California, Chaitén AD2008-2009, Chile; Cordón Caulle AD2011-2012, Chile), ejecting up to a few cubic km of material (tephra+flow/dome). Most, if not all, of these eruptions have in common the paradoxical coexistence of (1) eruptive styles which are inferred to be sustained in nature (subplinian and plinian), with (2) a pulsatory behavior displayed by the resulting fall deposits, and (3) the coeval ejection of vesicular tephra and pyroclastic obsidian. Through two case studies, we explore this apparent set of paradoxes, and their significance in understanding transitions from explosive to effusive behavior.

In this first case study (also cf. Leonhardi et al., same session), we present a new detailed stratigraphy of the AD1100 Big Glass Mountain eruption (Medicine Lake Volcano), along with a series of density measurements of tephra collected from several key units identified in the proximal fall deposits. The geochemical character of pumice and obsidian clasts from both the tephra and the obsidian flow is used to trace the origins of the different lithologies involved. We find that tens of waxing and waning cycles occurred during this eruption with at least two protracted phases, and that perhaps the term (sub)plinian may not be completely adequate to describe this particular eruption style. We also review models for the formation of juvenile pyroclastic obsidian in the context of rhyolitic eruptions.