H41E-0867:
Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011–2014 Drought From GPS, GRACE, and InSAR
Abstract:
Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons.GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m).
The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento–San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to 3 mm/yr.