SM31C-4198:
Particle Dynamics Discrimination Between Current Sheet Magnetic Field Reversal and Magnetic Neutral Line Fields

Wednesday, 17 December 2014
Richard F Martin Jr, Daniel L Holland and Jamie Svetich, Illinois State Univ, Normal, IL, United States
Abstract:
We consider dynamical signatures of ion motion that discriminate between a current sheet magnetic field reversal and a magnetic neutral line field. These two related dynamical systems have been studied previously as chaotic scattering systems with application to the Earth's magnetotail. Both systems exhibit chaotic scattering over a wide range of parameter values. The structure and properties of their respective phase spaces have been used to elucidate potential dynamical signatures that affect spacecraft measured ion distributions. In this work we consider the problem of discrimination between these two magnetic structures using charged particle dynamics. For example we show that signatures based on the well known energy resonance in the current sheet field provide good discrimination since the resonance is not present in the neutral line case. While both fields can lead to fractal exit region structuring, their characteristics are different and also may provide some field discrimination. Application to magnetotail field and particle parameters will be presented